Der elektromagnetische Schwingkreis

1) Gedämpfte Schwingungen

Versuchsaufbau:

Versuch:

Versuchsdaten: \(U_0 = 20 \text{ V}; \quad C = 470 \, \mu\text{F}; \quad L = 630 \, \text{H}; \quad R = 280 \, \Omega \)

In Schalterstellung 1 wird der Kondensator von einer Gleichspannungsquelle \((U_0) \) aufgeladen. Das Strommeßgerät ist dabei so gepolt, daß es einen positiven Lademoment anzeigt. Bringt man den Schalter in Stellung 2, so entlädt sich der Kondensator über die Spule. Dabei ergibt sich der folgende Verlauf von Kondensatorspannung und Strom im rechten Zweig:

Hinweis: Auf Grund obiger Festlegung der Stromrichtung muß bei der Entladung des Kondensators über die Spule der Strom im negativen Bereich beginnen.

Die an den Enden von C auftretende Spannung wird gemessen \((= U_c) \).

Ergebnis: Der Spannungsverlauf \(U_c(t) \) stellt eine gedämpfte Schwingung dar.

Durch den ohmschen Widerstand \(R \) von Spule und Leitung geht Energie in Form von Wärme verloren \(\rightarrow \) Dämpfung der Schwingung.