4 a) „von links oben nach rechts oben“: z. B. \(2x^4 - x + 7; \quad x^{10} + x^7 - 5x^2\)
 „von links unten nach rechts oben“: z. B. \(5x^3 - 1; \quad 1,5x^9 - 5x^8 + 2\)
 „von links unten nach rechts unten“: z. B. \(-4x^6 - 2x; \quad -7x^2 + 1\)
 „von links oben nach rechts unten“: z. B. \(-6x^3 + 4x^2 + x - 6; \quad -x^5 + 3\)

b) Individuelle Lösungen

5 mögliche Kriterien:
Nullstelle bei \(x = 0\): e, f, h
Graph schneidet die x-Achse (ohne Berühren): a, f, p, h, b
Graph berührt die x-Achse: d, e
Charakteristischer Verlauf: „von links oben nach rechts oben“: d, e, g
 „von links oben nach rechts unten“: a, f, h
 „von links unten nach rechts oben“: b
 „von links unten nach rechts unten“: p

6 a) Wird ein normaler Ausschnitt im x-Bereich zum Plotten gewählt (z. B. von \(-10\) bis \(10\)), so sieht der geplottete Ausschnitt des Graphen aus wie der Graph einer ganzrationalen Funktion dritten Grades. Ändert man den x-Bereich passend, so erkennt man, dass \(f\) bei etwa \(-50\) eine weitere Nullstelle hat und der Graph in der Tat „von links oben nach rechts oben“ verläuft.

7 1 \(x \mapsto x^3 + x^2 + 1\) N; Funktion 3. Grades, „von links unten nach rechts oben“ mit Funktionswert 1 an der Stelle 0.
2 \(x \mapsto -2x^2 + 2x + 2\) E; quadratische Funktion mit negativem Vorzeichen bei \(x^2\).
3 \(x \mapsto -x^2 - 3x^2\) I; Funktion mit ungeradem Grad, negativem Vorzeichen und Nullstelle \(x = 0\).
4 \(x \mapsto x^3 + x + 1\) R; Funktion mit ungeradem Grad, negativem Vorzeichen und Funktionswert 1 an der Stelle 0.
5 \(x \mapsto 2x^2 + 1\) E; Funktion vom Grad mindestens 4 mit Funktionswert 1 an der Stelle 0.
6 \(x \mapsto x^3 + x^2 + x\) F Funktion 3. Grades, „von links unten nach rechts oben“ mit Nullstelle \(x = 0\).
Lösungswort (von hinten gelesen): FERIEN

8 a) \(f(x)\) hat Grad 4. Grad 5 und 3 kann nicht sein, da \(f\) sonst wegen des charakteristischen Verlaufs eine dritte Nullstelle haben müsste. Da der Graph keine Parabel bzw. keine Gerade ist, scheiden Grad 2 bzw. Grad 1 aus. Also muss es sich um Grad 4 handeln, da der Grad kleiner als 6 ist.

b) \(f(x) = 1,5x^4 + 3x^3 - 0,5x^2 + 2\)
Lösung: Ab Methoden der Faktorisierung:

1a) \(f(x) = x^3 - 49x^2 = x^2(x - 49) \)

\[
= x^2(x + 7)(x - 7)
\]

b) \(f(x) = 3x^4 - 6x^3 = 3x^3(x - 2) \)

2a) \(f(x) = x^2 - 26x + 169 = (x - 13)^2 \)

b) \(f(x) = 3x^2 - 14x = 3(x^2 - 4x) \)

\[
= 3(x + 7)(x - 7)
\]

\[
\frac{3}{2}x^3 + 16x^2 + 32x \]

\[
= 2x(x^2 + 8x + 16)
\]

\[
= 2x(x + 4)^2
\]

c) \(f(x) = x^6 - 64x^4 \)

\[
= x^4(x^2 - 64)
\]

\[
= x^4(x + 8)(x - 8)
\]